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Abstract

This work considers a new approach for solving the inverse heat conduction problem of estimating unknown plan heat source. It is
shown that the physical heat transfer problem can be formulated as an optimization problem with differential equation constraints. A
modified genetic algorithm is developed for solving the resulting optimization problem. The proposed algorithm provides a global opti-
mum instead of a local optimum of the inverse heat transfer problem with highly-improved convergence performance. Some numerical
results are presented to demonstrate the accuracy and efficiency of the proposed method.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The direct heat transfer problems consist of determining
the temperature distribution inside the medium when the
boundary and initial conditions, heat generation rate, ther-
mophysical properties and geometric parameters are
known. In contrast, the inverse heat transfer problems con-
sider the identification of boundary and initial conditions,
heat generation rate, thermophysical properties and geo-
metric parameters by using the known temperature mea-
surements at certain locations during the process.

An enormous amount of work has been dedicated to the
inverse heat transfer problems since 1960s. A variety of
numerical and analytical techniques for solving the inverse
problem have been proposed in the literature. The least
square method developed by the addition of regularization
term was introduced by Beck et al. [1] and latter modified
by Tikhonov and Arsenin [2]. Blackwell [3] applied the
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sequential estimation approach to solve the one-dimen-
sional inverse heat conduction problem. The conjugate gra-
dient methods have been widely used in inverse heat
conduction and convection problems by Huang and his
colleagues [4–7]. Development of these methods is based
on the progress in mathematical theory and the advanced
computer technology. To improve the efficiency of these
methods and the accuracy of solutions, modified algo-
rithms have been documented recently.

Genetic algorithms are stochastic search methods that
lead a population towards an optimum using the principles
of evolution and natural genetics. With the proper encod-
ing, they can manipulate integer or continuously variables
and they can handle linear and non-linear constraints.
Genetic algorithms require little information of the prob-
lem itself. In this case, computations based on the algo-
rithms are attractive to users without optimal control
background. Moreover, it is well known that genetic algo-
rithm have been successfully applied to many optimization
problems. Extensive research has been performed exploit-
ing the robust properties of genetic algorithms and demon-
strating their capabilities across a broad range of problems
[8–15]. Compared with the traditional gradient methods
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which go from one initial guess solution in the search
domain to another at every instant, genetic algorithms on
the other hand search many possible solutions simulta-
neously and thus have the potential to give unbiased esti-
mation. This provides more chance to find the global
optimum in the search space.

In recent years, genetic algorithms have become a pop-
ular optimization tool for many areas of research. How-
ever, little work has been done in the inverse heat
transfer problems. An inverse analysis based on an
improved genetic algorithm was presented by Liu et al.
[16]. The algorithm has been applied to heat transfer coef-
ficients identification in electronic system cooling simula-
tion through temperature distribution. Since the slow
convergence performance of the micro-genetic algorithm,
a search domain narrowing operation has been proposed
in [16] to improve the performance of convergence so that
the whole computational procedure can be carried out
within an acceptable timeframe. The numerical result
shows that a 33% computational efficiency has been
improved. Moreover, Raudensky et al. [17] studied the
one-dimensional inverse heat conduction problem for esti-
mation of unknown material properties. Two artificial
intelligence mechanisms, neural network and genetic algo-
rithm, were applied in doing the inverse task. Both
approaches can lead to a solution without stability prob-
lem. The genetic algorithm approach gives relatively pre-
cise results but is quite computer-time consuming. An
inverse heat transfer problem for identifying heat transfer
coefficient in microelectronic package system was presented
by Liu et al. [18]. A reduced basis approach has been for-
mulated and coded for the problem to significantly reduce
the time for each forward analysis. In the inverse proce-
dure, an intergeneration-projection genetic algorithm was
introduced to speed up the process of finding the desired
global optimum that leads to the identification of heat
transfer coefficients.

In this work, an inverse heat transfer problem to esti-
mate an unknown transient heat source using genetic algo-
rithm is studied. The problem is analyzed and recast as an
optimum problem. A real-valued genetic algorithm is
applied to solve the discrete-time optimal control problem.
A modified genetic algorithm is then developed to improve
the performance of the computation and the accuracy of
solutions. Numerical results obtained for the real-valued
genetic algorithm and the modified genetic algorithm are
compared and discussed. The remainder of this paper is
organized as follows. In Section 2 the heat transfer problem
is described and formulated. It shows that the inverse prob-
lem can be converted into an optimization problem. Sec-
tion 3 provides an overview of the genetic algorithm. The
real-valued genetic algorithm for solving the inverse heat
transfer problem is described in Section 4. A modified
genetic algorithm is proposed in Section 5. Some numerical
results of the implementation of these algorithms for solv-
ing the inverse problem are discussed in Section 6. Section
7 concludes this paper by making some remarks.
2. The inverse heat transfer problem

Consider a plate heated by a plane surface heat source of
strength G(s) located at a specified position x = x*. Both
boundaries of the plate are insulated. In this one-dimen-
sional transient heat conduction, the function G(s) is the
heat source distribution which will be used to control the
temperature throughout the media. The mathematical for-
mulation of the problem is defined in the dimensionless
form as follows:

o
2T ðx; sÞ
ox2

þ GðsÞdðx� x�Þ ¼ oT ðx; sÞ
os

; 0 < x < 1; s > 0;

ð1aÞ

and subjected to the following boundary and initial
condition.

oT ð0; sÞ
ox

¼ 0; at x ¼ 0 for s > 0 ð1bÞ

oT ð1; sÞ
ox

¼ 0; at x ¼ 1 for s > 0 ð1cÞ

T ðx; 0Þ ¼ 0; at 0 6 x 6 1 for s ¼ 0 ð1dÞ

where d(.) is the Dirac delta function. The direct heat trans-
fer problem is a forward computation for finding the tem-
perature field T(x, s), i.e. the solutions of the above partial
differential equation, Eq. (1a), with heat source of strength
G(s), boundary and initial conditions, Eqs. (1b)–(1d), are
pre-assigned. Eqs. (1a)–(1d) are discrete and constructed
a system of equations either by finite difference method, fi-
nite element method, or boundary element method for the
numerical analysis. The nature of the problem changes
when the temperatures in certain location are known from
experiments and the heat source of strength G(s) has to be
found. In this case, the direct heat transfer problem be-
comes an inverse heat transfer problem.

The heat transfer problem defined by Eqs. (1a), (1b),
(1c) and (1d) becomes an inverse problem when the heat
source is unknown and to be estimated. The problem is
to find such unknown plan heat source, for which temper-
ature histories computed from the mathematic model are
close to measured histories at the sensor location. The
problem is solved in the least-square sense and a cost func-
tion can be defined as a sum of squared differences between
the measured temperatures and those from the computa-
tional results using a set of guess or estimated solutions.

f ðGÞ ¼
Xm

j¼1

ðT j � hjÞ2; ð2Þ

where Tj, j = 1, 2, . . . , m, is the temperature calculated
from direct problem by using an estimated function, G,
and hj, j = 1 2, . . . , m, is the measured temperature at
the same location and time step. The inverse problem can
be recast as the following discrete-time optimization prob-
lem, where the cost function is defined as Eq. (2), and the
desired system parameters, G(s), are determined by mini-
mizing the cost function:
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min f ðGÞ ¼
Xm

j¼1

ðT j � hjÞ2 ð3Þ

subject to T j is the solution of Eqs: ð1aÞ–ð1dÞ

There are many numerical methods and algorithms
available for solving problem (3). In this work, a genetic
algorithm based approach is considered to solve the dis-
crete-time optimal control problem.
3. Genetic algorithms

Genetic algorithms, primarily developed by Holland
[19], have been successfully applied to various optimization
problems. It is essentially a searching method based on the
Darwinian principles of biological evolution. Genetic algo-
rithm is a stochastic optimization algorithm which employs
a population of chromosomes, each of them represents a
possible solution. By applying genetic operators, each suc-
cessive incremental improvement in a chromosome
becomes the basis for the next generation. The process con-
tinues until the desired number of generations has been
completed or the pre-defined fitness value has been
reached.

The genetic algorithms differ from other methods of
search and optimization in a number of ways. (a) Genetic
algorithms search from a population of possible solutions
instead of a single one. (b) The fitness or cost function used
to resolve the redundancy has no requirement for continu-
ity in the derivatives, so virtually ‘‘any” fitness function can
be selected for optimizing. (c) Genetic algorithms use ran-
dom operators throughout the process including reproduc-
tion, crossover, and mutation. (d) Genetic algorithms are
blind since no specified information about the intended
problem is needed to obtain the final solution.

Basically, a genetic algorithm is a randomized search
technique to simulate the nature evolution. It operates on
a finite population of chromosomes. The chromosome is
formed from genes. The fundamental characteristics of
the chromosome are the values and the positions of the
genes. Each chromosome has its own fitness measure based
on the value and position. The new offspring of chromo-
somes is provided through genetic operations, i.e. selection,
crossover and mutation, which provide a powerful global
search mechanism.

Typically binary coding is used in classic genetic algo-
rithm, where each solution is encoded as a chromosome
of binary digits. Each member of the population represents
an encoded solution in the classic genetic algorithm. For
many problems, this kind of coding is not nature. The
genetic algorithm used in this work is not a classic genetic
algorithm. Instead, the application of genetic algorithm to
this discrete-time optimal control problem is called a real-
valued genetic algorithm. The continuous function is dis-
crete for numerical computation and simulated by a chro-
mosome. The value of each gene is a real number and
indicates the heat generation at each time step.
Generally, a genetic algorithm consists of the following
steps that are repeated until the optimum solution is found.

(1) Initialization means the creation of the initial popula-
tion. Many adaptive search methods work from point
to point, using local information to decide which
point to explore next. By contrast, the genetic algo-
rithms use a set of population in which consist many
points to start the search simultaneously. The initial
population is generated randomly and the population
size is kept constant throughout the process.

(2) Evaluation of the fitness functions of chromosomes in
the population. The fitness function is in most cases
the objective function that should be maximized (or
minimized) in the optimization problems. The fitness
function is defined as the sum squared differences
between the randomly generated guess values and
the exact solutions.

(3) Selection is the survival of the fittest within the
genetic algorithm and it is based on the fitness func-
tions of chromosomes to produce a new pool of pop-
ulation for the subsequent genetic operations. There
are many ways to achieve effective selection. One of
them is proportionate selection with ranking. The fit-
ness function is normalized with the average value, so
the chromosomes with above average fitness will be
kept for the next steps. That is at each generation rel-
atively good chromosomes are reproduced, the rela-
tively bad chromosomes die out. This step directs
the search towards the best.

(4) Crossover is a mating operator to allow production of
new offspring through combination of parts of chro-
mosomes with the purpose of constructing a better
solution. The simplest way is called the one-point
crossover. It is done by choosing randomly a pair
of the chromosomes and swapping parts of these
chromosomes to form a new pair of chromosomes.
A random cross-site between 1 and i � 1 is chosen
along the parent chromosomes, where i is the length
of the chromosome. Then, the chromosomes are cut
at the selected cross-site, and their end parts are
exchanged. The search is emphasized towards the
best and new solutions explored by using information
about things that have worked well in the previous
step. If one-point crossover is performed, it is possi-
ble to obtain a chromosome that cannot be matched.
In this case, a two-point or multi-point crossover can
be introduced to overcome this problem. As a result,
the performance of generating offspring is greatly
improved.

(5) Mutation is the occasional (with small probability)
random alteration of the genes of chromosome. The
mutation operator arbitrarily alters one or more
genes of a selected chromosome, which increase the
variability of the population and against the loss of
important genetic genes at a particular position. Each
bit position of each chromosome in the new popula-
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tion undergoes a random change with equal probabil-
ity. After mutation, the offspring are including into
the pool of population to repeat the process.

The computational procedure of a genetic algorithm is
as follows:

Step 1. Generate at random an initial population of
chromosomes.
Step 2. Evaluate the fitness of each chromosome in the
population.
Step 3. Select the best chromosomes, based on the fitness
function, for reproduction.
Step 4. Choose at random pairs of chromosomes for
mating. Exchange bit genes with crossover to create
new pairs of chromosomes.
Step 5. Process the new chromosomes by the mutation
operator. Put the resulting chromosomes into the
population.
Step 6. Repeat Step 2 to Step 5, until the fitness function
is convergent or less than a predefined value.

The algorithm only requires fitness function for each of
the chromosome, without the need for assumption such as
differentiability, which makes it very useful for a discontin-
uous function.

4. A real-valued genetic algorithm for solving the inverse heat

transfer problem

In this section, a real-valued genetic algorithm is consid-
ered for solving the inverse heat transfer problem of esti-
mating transient heat source of strength. The continuous
function of heat source, G, is discretized for numerical
computation and simulated by a chromosome. The value
of each gene is a real number and indicates the heat source
function at each time step. The problem is to find such
unknown heat source, for which temperature histories
computed from the mathematic model at the sensor loca-
tion are close to measured histories. In our problem mea-
sured temperatures, h, are simulated by solving the direct
problem with exact heat source. Then the inverse problem
becomes an optimization problem as defined in Eq. (3).

Consider the problem of finding a minimum of the func-
tion f(G). For this optimization problem, at each genera-
tion k of the genetic algorithm we will maintain a
population of chromosomes

Dk ¼ fGk
1;G

k
2;G

k
3 . . . Gk

i . . . Gk
ng i ¼ 1; 2; . . . ; n; ð4Þ

where Gk
i is a chromosome which represents a feasible solu-

tion, k is a generation number and n is an arbitrarily chosen
length of the population. The chromosome Gk

i is defined as
follows:

Gk
i ¼ ðgi1; gi2; gi3; . . . ; gij; . . . ; gimÞ; j ¼ 1; 2; . . . ;m; ð5Þ

where gij is an individual gene and m is the number of genes
which represents the number of time steps for computa-
tion. Substituting Gk
i into the constraints Eqs. (1a)–(1c)

and (1d), the computed temperatures, Tj, can be calculated.
Each feasible solution Gk

i is evaluated by computing the fit-
ness function f ðGk

i Þ, which provides us the measurement of
fitness of the solution,

f ðGk
i Þ ¼

Xm

j¼1

ðT j � hjÞ2: ð6Þ

Some of the feasible solutions are selected based on the
ranking of the fitness of solutions. Then the selected solu-
tions are recombined using crossover and mutation to form
a new set population at the (k + 1)th generation (the pop-
ulation size n remains fixed for the computation).

Crossover is a process of exchanging members between
two solutions. Two solutions are randomly selected as par-
ent structures from the population. Then arbitrary posi-
tions on both solutions are chosen for crossing location,
where the exchanges of members take place. For example,
if parent structures are represented by six members, say,

G1 ¼ ðg11; g12; g13; g14; g15; g16Þ and

G2 ¼ ðg21; g22; g23; g24; g25; g26Þ;

then the crossing the solutions between the second and the
sixth members would produce the offspring

ðg11; g12; g23; g24; g25; g16Þ and

ðg21; g22; g13; g14; g15; g26Þ:

A mutation operator arbitrary alters one or more mem-
bers of a selected solution. This increases the variability of
the population. Each member position of each solution in
the new population undergoes a random change with the
probability equal to the mutation rate.

After the step of mutation, the new set of population is
formed for the (k + 1)th generation. The process is
repeated until a pre-defined number of generations is
reached or the solutions converge.

5. A modified genetic algorithm

For the real-valued genetic algorithm, one major diffi-
culty lies in solving the inverse heat transfer problem to a
satisfactory degree of precision. Although the real-valued
genetic algorithm has been proved highly successful as an
optimization, the slowly convergence performance is a bot-
tleneck as an iterative solver. Raudensky et al. [20] studied
the application of genetic algorithm for searching the solu-
tion of an inverse heat conduction problem. In their work
the heat transfer coefficient h at the convective boundary is
to be identified. The numerical solutions perform well by
using the genetic algorithm. The accuracy of the results
improved significantly before certain number of genetic
steps. However, the improvement is discouraging for fur-
ther computations. To improve the search performance in
their work, a regularization term is added to the fitness
function to penalize the oscillations of h. Different tech-
niques for improving the accuracy and performance of
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the genetic algorithm have been reported. Among them,
local search techniques are often recommended to combine
with the genetic algorithms. In this work an additional cost
function, J, is added to the real-valued genetic algorithm to
improve the computational efficiency, and it can be defined
as follows:

J kðgijÞ ¼ jT j � hjj; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m: ð7Þ

The cost function J introduced here is to select the best
individual genes to form new solutions for the next steps.
After the step of selection, the best solutions are selected
according to the fitness function f(Gi). Instead of going to
the step of crossover and mutation in the real-valued
genetic algorithm, the cost function J, is added for evaluat-
ing the individual genes before going to the step of cross-
over in the modified genetic algorithm. Among the best
solutions after selection, the best genes are selected in each
individual gene positions according to the cost function J

to form other new solutions. That is, the individual genes
gi1, i = 1, 2, . . . , n, are ranking and selected according to
the function J for the first gene position of all solutions.
For example, if possible solutions are represented by six
members, say,

G1 ¼ ðg11; g12; g13; g14; g15; g16Þ;
G2 ¼ ðg21; g22; g23; g24; g25; g26Þ; and

G3 ¼ ðg31; g32; g33; g34; g35; g36Þ:

The computations of the function J are

Jðg11Þ ¼ 3; Jðg21Þ ¼ 5; and Jðg31Þ ¼ 1:

Then the rearrangement of genes for the first gene position
according to the function J would produce the following
solutions:

ðg31; g12; g13; g14; g15; g16Þ;
ðg11; g22; g23; g24; g25; g26Þ; and

ðg21; g32; g33; g34; g35; g36Þ:

Then the same ranking and selected system are imple-
mented on the second gene position of all solutions. The
procedure is completed until the best genes are selected at
all positions of the solutions. New solutions are composite
by combining these highly ranking individual genes at dif-
ferent positions. The modified genetic algorithm does not
only select the best solutions, but also bring the best genes
into the next steps and the next generation. A flowchart of
the modified genetic algorithm is shown in Fig. 1.
6. Numerical examples and discussion

In this section, the genetic algorithms for solving the
inverse heat transfer problem of estimating transient heat
source of strength is illustrated by some numerical exam-
ples. Consider the continuous function of the heat source
as follows:
GðsÞ ¼
1:8s; 0 6 s < 0:5;

1:9� 2s; 0:5 6 s < 0:8;

0:3; 0:8 6 s 6 1;

8><
>:

ð8Þ

where G is a triangular time variation and discrete for
numerical computation.

Genetic algorithms are based on the premise that most
chromosomes contain at least some useful information
and that, by sharing it, an improved solution can be cre-
ated. For this reason the initial population should be rea-
sonably as large and diverse as possible. In our problem
a population of 24 chromosomes of 60 genes is used as
the initial guess solutions for numerical experiments. These
initial values of chromosomes are created by using the ran-
dom number generator.

At first the test case is carried out for the real-valued
genetic algorithm to check the stability of the approach.
Fig. 2 shows the fitness functions of three different runs
for 500 generations. The initial population of 24 feasible
solutions of 60 genes is generated by using the random
number generator. Therefore, different runs generate differ-
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ent initial guess solution for starting the search procedure.
The trends of the fitness functions perform similarly. More-
over, the fitness functions are close to one another in the
generations computed in all three runs. In this case the
solution of the real-valued genetic algorithm is not highly
dependent on the initial guess solutions.

To examine the accuracy of solutions, the estimated
solutions obtained by the genetic algorithm are compared
to the exact solutions as shown in Fig. 3. The heat source
function estimates by the three different numbers of gener-
ations, namely 1000, 10,000 and 100,000, are plotted with
the exact heat source. The functional form is well esti-
mated, but not good enough, by all three cases even though
for the case of 100,000 generations. The more number of
generations, the better accuracy the solution is.

To solve the current inverse problem to a satisfactory
degree of precision, an additional cost function is added
to the real-valued algorithm to enhance its performance.
Results of inverse analysis using the proposed modified
genetic algorithm are shown in Fig. 4 for three different
numbers of generations, 100, 500, and 1000. The perfor-
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Fig. 3. The estimated results for different number of generations using the
real-valued genetic algorithm.
mance of the solutions obtained by the modified genetic
algorithm is much improved than that of the real-valued
genetic algorithm for 1000 generations as shown in
Fig. 5. Eventually, the numerical results for the case of
100 generations using the modified genetic algorithm are
much better than that of 100,000 generations using the
real-valued genetic algorithm. The convergence results of
the fitness functions for both the real-valued and the mod-
ified algorithms for 1000 generations are shown in Fig. 6.
The modified genetic algorithm is efficiently performed
since the number of generations is much less to reach the
same fitness function for the real-valued genetic algorithm.

In [20], a regularization term is added to improve the
accuracy of solutions for the genetic algorithm. The regu-
larization parameter must be selected based on some
knowledge about the expected variation of the unknown
function. Compared to the method of Raudensky et al.
[20] the present work used no prior information on the
function to be predicted.

For inverse heat conduction problems the temperature
measurements may contain some noise. To illustrate the
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Fig. 5. Numerical results of the real-valued and the modified genetic
algorithms in the case of 1000 generations.
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accuracy of the modified genetic algorithm in predicting
the unknown heat source, the measured temperatures
involving random measurement errors are also investi-
gated. Fig. 7 presents the results of estimation for 1000 gen-
erations with 0%, 3% and 5% errors using the proposed
modified genetic algorithm. The random errors are nor-
mally distributed with zero mean in the measured temper-
atures (hj). The results reveal that the accuracy of
estimation decreasing while the measurement error is
increasing.

All numerical experiments were implemented on a per-
sonal computer with AMD Athlon 64 2.01 GHz CPU
and 1.0 GB RAM. The CPU time for carrying out the
real-valued genetic algorithm is about 132, 1294 and
12,689 s for 1000, 10,000, and 100,000 generations, respec-
tively. The computer code of the modified genetic algo-
rithm is larger than that of real-valued genetic algorithm
because of the additional cost function for evaluation.
The CPU time for carrying out the modified genetic algo-
rithm is about 138 s for 1000 generations. For calculating
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Fig. 7. The estimated results for measurements with noise using modified
genetic algorithm.
the same number of generations, the modified genetic algo-
rithm spends more CPU time than the real-valued genetic
algorithm, while the solution is highly improved. In our
implementation, it takes less than 7 s and 40 generations
for the modified genetic algorithm compared to 132 s and
1000 generations for the real-valued genetic algorithm to
achieve the same solution accuracy (fitness).

7. Conclusion

An inverse analysis for the unknown heat source func-
tion by using the genetic algorithms is studied. A modified
genetic algorithm is developed for solving the inverse heat
transfer problem to a satisfactory degree of precision.
Some empirical results are provided to illustrate the pro-
posed algorithms. Compared to the real-valued genetic
algorithm, the modified genetic algorithm essentially
reduces the computational time for convergence with
highly qualitative correct results.
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